Zusammenfassung
Die Entwicklung von Ultraschallkontrastmitteln der zweiten Generation hat zu einer
Erweiterung der diagnostischen Optionen in der Ultraschalldiagnostik geführt. Ihre
physikalischen Eigenschaften erlauben auch einen therapeutischen Einsatz. So konnte
gezeigt werden, dass die ultraschallgesteuerte Zerstörung von gasgefüllten Mikrosphären
für die organspezifische Freisetzung von gentherapeutischen Vektoren und Medikamenten
genutzt werden kann. Die meisten Anwendungen auf diesem Gebiet wurden bislang am Herzen
getestet. Allerdings ist dieses nicht-invasive Verfahren auf alle Organe übertragbar,
die dem Ultraschall zugänglich sind. In dieser Übersichtsarbeit sollen die theoretischen
Hintergründe dieser Methode sowie die nichtkardialen Applikationen beschrieben werden.
Abstract
The development of second generation ultrasound contrast agents has extended the diagnostic
scope of ultrasound imaging. Due to their physical characteristics, a therapeutic
application of such microbubble based contrast agents has been promoted. Recently,
several groups have demonstrated that ultrasound targeted microbubble destruction
(UTMD) may deliver drugs or gene therapy vectors to organs accessible by ultrasound,
thus providing a new technique for non-invasive, organ specific delivery of bioactive
substances. Most applications in this field have been tested in cardiac models, but
other organs can be treated as well. This article will give an overview of the background
of UTMD and its non-cardiac applications.
Schlüsselwörter
Kontrastmittel - Ultraschall - Medikamententherapie - Gentherapie - Echolardiographie
Key words
Contrast agents - ultrasound - drug therapy - gene therapy - echocardiography
References
1
Shohet R V, Chen S, Zhou Y T. et al .
Echocardiographic destruction of albumin microbubbles directs gene delivery to the
myocardium.
Circulation.
2000;
101
2554-2556
2
Mukherjee D, Wong J, Griffin B. et al .
Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor
with ultrasound after systemic administration.
J Am Coll Cardiol.
2000;
35
1678-1686
3
Chen S, Shohet R V, Bekeredjian R. et al .
Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid
deoxyribonucleic acid by ultrasound-targeted microbubble destruction.
J Am Coll Cardiol.
2003;
42
301-308
4
Bekeredjian R, Chen S, Frenkel P A. et al .
Ultrasound-targeted microbubble destruction can repeatedly direct highly specific
plasmid expression to the heart.
Circulation.
2003;
108
1022-1026
5
Keller M W, Feinstein S B, Watson D D.
Successful left ventricular opacification following peripheral venous injection of
sonicated contrast agent: an experimental evaluation.
Am Heart J.
1987;
114
570-575
6
Mayer S, Grayburn P A.
Myocardial contrast agents: recent advances and future directions.
Prog Cardiovasc Dis.
2001;
44
33-44
7
Von Bibra H, Voigt J U, Froman M. et al .
Interaction of Microbubbles with Ultrasound.
Echocardiography.
1999;
16
733-741
8
Albrecht T, Blomley M, Bolondi L. et al .
EFSUMB Study Group. Guidelines for the use of contrast agents in ultrasound.
Ultraschall Med.
2004;
25
249-256
9
Firschke C, Lindner J R, Wei K. et al .
Myocardial perfusion imaging in the setting of coronary artery stenosis and acute
myocardial infarction using venous injection of a second-generation echocardiographic
contrast agent.
Circulation.
1997;
96
959-967
10
Becher H, Tiemann K, Schlief R. et al .
Harmonic Power Doppler Contrast Echocardiography: Preliminary Clinical Results.
Echocardiography.
1997;
14
637
11
Burns P N, Wilson S R, Simpson D H.
Pulse inversion imaging of liver blood flow: improved method for characterizing focal
masses with microbubble contrast.
Invest Radiol.
2000;
35
58-71
12
Strobel D, Kleinecke C, Hansler J. et al .
Contrast-enhanced sonography for the characterisation of hepatocellular carcinomas-correlation
with histological differentiation.
Ultraschall Med.
2005;
26
270-276
13
Wei K, Jayaweera A R, Firoozan S. et al .
Basis for detection of stenosis using venous administration of microbubbles during
myocardial contrast echocardiography: bolus or continuous infusion?.
J Am Coll Cardiol.
1998;
32
252-260
14
Leong-Poi H, Le E, Rim S J. et al .
Quantification of myocardial perfusion and determination of coronary stenosis severity
during hyperemia using real-time myocardial contrast echocardiography.
J Am Soc Echocardiogr.
2001;
14
1173-1182
15
Hansen A, Bekeredjian R, Filusch A. et al .
Cardioprotective effects of the novel selective endothelin-A receptor antagonist BSF
461 314 in ischemia-reperfusion injury.
J Am Soc Echocardiogr.
2005;
18
1213-1220
16
Frenkel P A, Chen S, Thai T. et al .
DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro.
Ultrasound Med Biol.
2002;
28
817-822
17
Pislaru S V, Pislaru C, Kinnick R R. et al .
Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and
ultrasound modalities.
Eur Heart J.
2003;
24
1690-1698
18
Price R J, Skyba D M, Kaul S. et al .
Delivery of colloidal particles and red blood cells to tissue through microvessel
ruptures created by targeted microbubble destruction with ultrasound.
Circulation.
1998;
98
1264-1267
19
Bekeredjian R, Chen S, Grayburn P A. et al .
Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction.
Ultrasound Med Biol.
2005;
31
687-691
20
Christiansen J P, French B A, Klibanov A L. et al .
Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic
microbubbles.
Ultrasound Med Biol.
2003;
29
1759-1767
21
Korpanty G, Chen S, Shohet R V. et al .
Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction
of microbubbles.
Gene Ther.
2005;
[Epub ahead of print]
22
Huber P E, Pfisterer P.
In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1
is enhanced by focused ultrasound.
Gene Ther.
2000;
7
1516-1525
23
Miller D L, Bao S, Gres R A. et al .
Ultrasonic enhancement of gene transfection in murine melanoma tumors.
Ultrasound Med Biol.
1999;
25
1425-1430
24
Emlen W, Mannik M.
Kinetics and mechanisms for removal of circulating single-stranded DNA in mice.
J Exp Med.
1978;
147
684-699
25
Postema M, van Wamel A, Lancee C T. et al .
Ultrasound-induced encapsulated microbubble phenomena.
Ultrasound Med Biol.
2004;
30
827-840
26
Brujan E A.
The role of cavitation microjets in the therapeutic applications of ultrasound.
Ultrasound Med Biol.
2004;
30
381-387
27
Tachibana K, Uchida T, Ogawa K. et al .
Induction of cell-membrane porosity by ultrasound.
Lancet.
1999;
353
1409
28
Bao S, Thrall B D, Miller D L.
Transfection of a reporter plasmid into cultured cells by sonoporation in vitro.
Ultrasound Med Biol.
1997;
23
953-957
29
Miller D L, Quddus J.
Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast agent
gas bodies.
Ultrasound Med Biol.
2000;
26
661-667
30
Miller D L, Pislaru S V, Greenleaf J E.
Sonoporation: mechanical DNA delivery by ultrasonic cavitation.
Somat Cell Mol Genet.
2002;
27
115-134
31
Marmottant P, Hilgenfeldt S.
Controlled vesicle deformation and lysis by single oscillating bubbles.
Nature.
2003;
423
153-156
32
van Wamel A, Bouakaz A, Versluis M. et al .
Micromanipulation of endothelial cells: ultrasound-microbubble-cell interaction.
Ultrasound Med Biol.
2004;
30
1255-1258
33
Zhu S, Zhong P.
Shock-wave-inertial microbubble interaction: a theoretical study based on the Gilmore
formulation for bubble dynamics.
J Acoust Soc Am.
1999;
106
3024-3033
34
Zhong P, Lin H, Xi X. et al .
Shock wave-inertial microbubble interaction: methodology, physical characterization,
and bioeffect study.
J Acoust Soc Am.
1999;
105
1997-2009
35
Holt R G, Roy R A.
Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in
a tissue-mimicking material.
Ultrasound Med Biol.
2001;
27
1399-1412
36
Stride E, Saffari N.
On the destruction of microbubble ultrasound contrast agents.
Ultrasound Med Biol.
2003;
29
563-573
37
May D J, Allen J S, Ferrara K W.
Dynamics and fragmentation of thick-shelled microbubbles.
IEEE Trans Ultrason Ferroelectr Freq Control.
2002;
49
1400-1410
38
Bouakaz A, Versluis M, de Jong N.
High-speed optical observations of contrast agent destruction.
Ultrasound Med Biol.
2005;
31
391-399
39
Lawrie A, Brisken A F, Francis S E. et al .
Microbubble-enhanced ultrasound for vascular gene delivery.
Gene Ther.
2000;
7
2023-2027
40
Lawrie A, Brisken A F, Francis S E. et al .
Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced
free radicals.
Ultrasound Med Biol.
2003;
29
1453-1461
41
Teupe C, Richter S, Fisslthaler B. et al .
Vascular gene transfer of phosphomimetic endothelial nitric oxide synthase (S1177D)
using ultrasound-enhanced destruction of plasmid-loaded microbubbles improves vasoreactivity.
Circulation.
2002;
105
1104-1109
42
Akowuah E F, Gray C, Lawrie A. et al .
Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased
lumen size in a porcine interposition graft model.
Gene Ther.
2005;
[Epub ahead of print]
43
Taniyama Y, Tachibana K, Hiraoka K. et al .
Local delivery of plasmid DNA into rat carotid artery using ultrasound.
Circulation.
2002;
105
1233-1239
44
Hashiya N, Aoki M, Tachibana K. et al .
Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble
agent (Optison) inhibits intimal hyperplasia after balloon injury in rat carotid artery
model.
Biochem Biophys Res Commun.
2004;
317
508-514
45
Hajri Z, Boukadoum M, Hamam H. et al .
An investigation of the physical forces leading to thrombosis disruption by cavitation.
J Thromb Thrombolysis.
2005;
20
27-32
46
Culp W C, Porter T R, Xie F. et al .
Microbubble potentiated ultrasound as a method of declotting thrombosed dialysis grafts:
experimental study in dogs.
Cardiovasc Intervent Radiol.
2001;
24
407-412
47
Culp W C, Porter T R, McCowan T C. et al .
Microbubble-augmented ultrasound declotting of thrombosed arteriovenous dialysis grafts
in dogs.
J Vasc Interv Radiol.
2003;
14
343-347
48
Xie F, Tsutsui J M, Lof J. et al .
Effectiveness of lipid microbubbles and ultrasound in declotting thrombosis.
Ultrasound Med Biol.
2005;
31
979-985
49
Dhond M R, Nguyen T T, Dolan C. et al .
Ultrasound-enhanced thrombolysis at 20 kHz with air-filled and perfluorocarbon-filled
contrast bispheres.
J Am Soc Echocardiogr.
2000;
13
1025-1029
50
Tachibana K, Tachibana S.
Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated
thrombolysis.
Circulation.
1995;
92
1148-1150
51
Mizushige K, Kondo I, Ohmori K. et al .
Enhancement of ultrasound-accelerated thrombolysis by echo contrast agents: dependence
on microbubble structure.
Ultrasound Med Biol.
1999;
25
1431-1437
52
Liang H D, Lu Q L, Xue S A. et al .
Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle
cells.
Ultrasound Med Biol.
2004;
30
1523-1529
53
Lu Q L, Liang H D, Partridge T. et al .
Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle
in vivo with reduced tissue damage.
Gene Ther.
2003;
10
396-405
54
Wang X, Liang H D, Dong B. et al .
Gene transfer with microbubble ultrasound and plasmid DNA into skeletal muscle of
mice: comparison between commercially available microbubble contrast agents.
Radiology.
2005;
237
224-229
55
Taniyama Y, Tachibana K, Hiraoka K. et al .
Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement
of transfection efficiency of maked plasmid DNA in skeletal muscle.
Gene Ther.
2002;
9
372-380
56
Song J, Qi M, Kaul S. et al .
Stimulation of arteriogenesis in skeletal muscle by microbubble destruction with ultrasound.
Circulation.
2002;
106
1550-1555
57
Song J, Cottler P S, Klibanov A L. et al .
Microvascular remodeling and accelerated hyperemia blood flow restoration in arterially
occluded skeletal muscle exposed to ultrasonic microbubble destruction.
Am J Physiol Heart Circ Physiol.
2004;
287
H2754-2761
58
Sheikov N, McDannold N, Vykhodtseva N. et al .
Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence
of microbubbles.
Ultrasound Med Biol.
2004;
30
979-989
59
Shimamura M, Sato N, Taniyama Y. et al .
Development of efficient plasmid DNA transfer into adult rat central nervous system
using microbubble-enhanced ultrasound.
Gene Ther.
2004;
11
1532-1539
60
Manome Y, Nakayama N, Nakayama K. et al .
Insonation facilitates plasmid DNA transfection into the central nervous system and
microbubbles enhance the effect.
Ultrasound Med Biol.
2005;
31
693-702
61
Shimamura M, Sato N, Taniyama Y. et al .
Gene transfer into adult rat spinal cord using naked plasmid DNA and ultrasound microbubbles.
J Gene Med.
2005;
7
1468-1474
62
Koike H, Tomita N, Azuma H. et al .
An efficient gene transfer method mediated by ultrasound and microbubbles into the
kidney.
J Gene Med.
2005;
7
108-116
63
Ng Y Y, Hou C C, Wang W. et al .
Blockade of NFkappaB activation and renal inflammation by ultrasound-mediated gene
transfer of Smad7 in rat remnant kidney.
Kidney Int Suppl.
2005;
S83-91
64
Hou C C, Wang W, Huang X R. et al .
Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming
growth factor-beta signaling and fibrosis in rat remnant kidney.
Am J Pathol.
2005;
166
761-771
65
Ohta S, Suzuki K, Tachibana K. et al .
Microbubble-enhanced sonoporation: efficient gene transduction technique for chick
embryos.
Genesis.
2003;
37
91-101
66
Endoh M, Koibuchi N, Sato M. et al .
Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound.
Mol Ther.
2002;
5
501-508
67
Miao C H, Brayman A A, Loeb K R. et al .
Ultrasound enhances gene delivery of human factor IX plasmid.
Hum Gene Ther.
2005;
16
893-905
68
Nakaya H, Shimizu T, Isobe K. et al .
Microbubble-enhanced ultrasound exposure promotes uptake of methotrexate into synovial
cells and enhanced antiinflammatory effects in the knees of rabbits with antigen-induced
arthritis.
Arthritis Rheum.
2005;
52
2559-2566
69
Yang L, Shirakata Y, Tamai K. et al .
Microbubble-enhanced ultrasound for gene transfer into living skin equivalents.
J Dermatol Sci.
2005;
40
105-114
70
Skyba D M, Price R J, Linka A Z. et al .
Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound
and its local effects on tissue.
Circulation.
1998;
98
290-293
71
Ay T, Havaux X, Van Camp G. et al .
Destruction of contrast microbubbles by ultrasound: effects on myocardial function,
coronary perfusion pressure, and microvascular integrity.
Circulation.
2001;
104
461-466
72
Li P, Cao L Q, Dou C Y. et al .
Impact of myocardial contrast echocardiography on vascular permeability: an in vivo
dose response study of delivery mode, pressure amplitude and contrast dose.
Ultrasound Med Biol.
2003;
29
1341-1349
73
Li P, Armstrong W F, Miller D L.
Impact of myocardial contrast echocardiography on vascular permeability: comparison
of three different contrast agents.
Ultrasound Med Biol.
2004;
30
83-91
74
Borges A C, Walde T, Reibis R K. et al .
Does contrast echocardiography with Optison induce myocardial necrosis in humans?.
J Am Soc Echocardiogr.
2002;
15
1080-1086
75
Chen S, Kroll M H, Shohet R V. et al .
Bioeffects of myocardial contrast microbubble destruction by echocardiography.
Echocardiography.
2002;
19
495-500
76
Bekeredjian R, Chen S, Pan W. et al .
Effects of ultrasound targeted microbubble destruction on cardiac gene expression.
Ultrasound Med Biol.
2004;
30
539-543
Raffi Bekeredjian, M.D.</
Department of Cardiology, University of Heidelberg
Im Neuenheimer Feld 410
69120 Heidelberg
Telefon: ++ 49/62 21/5 63 90 97
Fax: ++ 49/62 21/56 55 15
eMail: raffi.bekeredjian@med.uni-heidelberg.de